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Abstract

Although annual data are commonly used to model linear trends and changes in trends of disease 

incidence, monthly data could provide additional resolution for statistical inferences. Because 

monthly data may exhibit seasonal patterns, we need to consider seasonally adjusted models, 

which can be theoretically complex and computationally intensive. We propose a combination of 

methods to reduce the complexity of modeling seasonal data and to provide estimates for a change 

in trend when the timing and magnitude of the change are unknown. To assess potential changes in 

trend, we first used autoregressive integrated moving average (ARIMA) models to analyze the 

residuals and forecast errors, followed by multiple ARIMA intervention models to estimate the 

timing and magnitude of the change. Because the variable corresponding to time of change is not a 

statistical parameter, its confidence bounds cannot be estimated by intervention models. To model 

timing of change and its credible interval, we developed a Bayesian technique. We avoided the 

need for computationally intensive simulations by deriving a closed form for the posterior 

distribution of the time of change. Using a combination of ARIMA and Bayesian methods, we 

estimated the timing and magnitude of change in trend for tuberculosis cases in the United States. 
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1. Introduction

The incidence rate of tuberculosis (TB) in the United States declined from 52.6 cases per 

100,000 persons in 1953 to 5.8/100,000 in 2000 [1, 2]. Since 2000, TB incidence rates 

steadily declined at an average annual percent change of −3.8% [3]. In 2009, however, a 

sharp and unexpected incidence decline of −11.4% (3.8/100,000) was observed in the 

National Tuberculosis Surveillance System (NTSS) [4], followed by a decline of −3.9% in 

2010 (3.6/100,000) [2]. Moreover, the observed annual TB case count in 2009 and 2010 fell 
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outside of 95% prediction bounds of the log transformed linear trend of 2000–2008 (Figure 

1).

Considering the steady decline in TB trend in previous years, we were interested to 

determine what statistical inference about the change in trend, and the timing and magnitude 

of the change, could be drawn. However, with only two newly observed annual data points 

outside of the prediction bounds of the linear trend, limited statistical inference was possible. 

Therefore, we used detailed monthly case count data [5] from the NTSS to increase the 

resolution for analysis and allow for better inference.

Tuberculosis cases reported to the NTSS from January 1, 2000 through December 31, 2010 

were included for analysis if TB treatment had started within the same reporting year. The 

use of the treatment start date and the report date for the selection of the TB cases ensured 

comparable monthly data throughout the study period, particularly for the last months of 

2010 in comparison to earlier years. Cases were aggregated by month of treatment start date. 

As shown in Figure 2, the monthly TB data exhibited a seasonal pattern.

Because monthly time series data were seasonal, linear trend analysis without seasonal 

adjustment would not have been appropriate and more sophisticated models were required. 

To estimate the trend and change in trends in a time series data, autoregressive integrated 

moving average (ARIMA) models can be explored [5–8]; intervention analysis [8–10] can 

be used to estimate the magnitude of the change when the intervention timing is known. 

When the timing of change is uncertain, modeling using ARIMA and Joinpoint methods [5, 

11] or a dynamic model combining time series modeling with Bayesian methods could be 

helpful.

Because it is theoretically complex and computationally intensive to build a dynamic model 

combining the time series and Bayesian components, we approached the modeling in several 

stages. First, we used ARIMA models to analyze the residuals and forecast errors. Next, we 

used several ARIMA intervention models to estimate the timing and magnitude of the drop, 

specifying for each model that the intervention occurred at a different month in the vicinity 

of late 2008/early 2009. Finally, Bayesian analysis [12–14] was constructed to estimate the 

timing of the drop and its credible interval. While different Bayesian methods have been 

used to model the change points in other studies [13, 14], the Bayesian technique developed 

in this study provides a closed form for the posterior distribution for the timing of the change 

point.

2. Methods

2.1. Time series

Time series methodology may be used to assess seasonal patterns in the monthly case data. 

We employed classical seasonal ARIMA models [8] for the 2000–2007 log-transformed 

data. These take the form

1 − ∑
i = 1

p
αiBi 1 − ∑

i = 1

P
βiBi (1 − B)d 1 − B12 Dyt = 1 − ∑

i = 1

q
θiBi 1 − ∑

i = 1

Q
γiBi et
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where yt is the expected number of cases at time t, et is the white noise error term at time t, 
and B is the backward shift operator, Byt = yt−1. These models include: autoregressive 

parameters αi, βi (seasonal) with orders p, P; moving average parameters θi, γi (seasonal) 

with orders q, Q; differences d, D (seasonal). The seasonal lag is 12 months.

To select the best model for monthly TB case counts with associated orders (p, d, q), (P, D, 

Q), we calculated the autocorrelation, partial autocorrelation, inverse autocorrelation, and 

white noise probability functions. We also examined the distribution of residuals, quantile-

residual plots, and forecasting values. Goodness of fit was assessed by the Akaike 

information criterion (AIC) and Schwarz criterion. R2 was also computed. We selected the 

best model and used it to forecast the monthly data for 2008 to 2010. Observed data from 

2008 were compared with the model forecast for validation. The goal was to establish a 

model that fit 2000–2007 data and reliably forecast 2008 data. The model was used to 

predict the monthly case counts for 2009–2010 assuming no change in trend.

To evaluate the model and make statistical inferences from the monthly data, we examined 

residuals from the 2001–2007 data and differences of observed and expected cases for 2008 

to 2010. We used t-tests for the null hypotheses of no differences between 2001–2007 

residuals and observed minus expected cases for each individual year 2008, 2009, 2010. We 

calculated p-values and interpreted p < 0.05 to indicate a significant difference.

2.2. Intervention models

Intervention analysis has been used in economics and other disciplines [9, 10]. It can be 

applied to time series data when a predetermined intervention time m is specified, 

corresponding to the drop in cases

Zt = βSt + Yt St = 0 (t < m)
1 (t ⩾ m)

Here, Yt is an ARIMA model, β is the magnitude of the drop, and St is a step function.

In the monthly TB data, however, the time of the drop in cases was unknown. Therefore, we 

constructed a series of intervention models, one model for each month from July 2007 to 

June 2010, with the month corresponding to the intervention time, m. These were used to fit 

log-transformed monthly TB data. In each instance, we modeled the magnitude of the drop 

β, representing the sharp decline of TB cases. For all intervention models, identical ARIMA 

parameters (p, d, q), (P, D, Q) were selected to ensure consistency when comparing the AIC 

values for model fitting. We retained the model with smallest AIC as the best fit. After 

identifying the best model and the time of the drop in cases, we calculated the magnitude of 

the drop and its confidence interval.

In the intervention model, confidence bounds for the time of the drop are inestimable 

because m is not a statistical parameter. We adopted a Bayesian approach to estimate the 

time of change and its associated credible interval.
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2.3. Bayesian analysis

To estimate the timing of the drop in TB cases and its confidence bounds, a Bayesian 

approach was developed. In this approach, the residuals of 2001–2007 and the differences of 

observed and expected data of 2008–2010 in the first ARIMA model were used for analysis. 

The monthly data of observed minus expected (x1, x2, …, xn) from 2001 to 2010 were 

assumed to follow two normal distributions: the first distribution before month m, the second 

after and including month m, where the change point m(1 < m ⩽ n) is a parameter of 

interest.

x1, x2, ⋯, xm − 1 ∣ μ1, σ1
2 N μ1, σ1

2

xm, ⋯, xn ∣ μ2, σ2
2 N μ2, σ2

2

To facilitate calculation, we chose the conjugate prior distribution of σi2 as scaled inverse chi-

squared and the conditional distribution of μi given σi2 as normal [12]

μi ∣ σi2 N θi, σi2/κi , σi2 Inv − χ2 vi, τi2 , i = 1, 2

We assumed a noninformative uniform prior distribution for m : p(m) ∝ 1.

The corresponding joint prior densities, assumed to be independent of each other, are

p μi, σi2 = p μi ∣ σi2 ⋅ p σi2 ∝ σi2
− vi + 1 /2 + 1

⋅ exp − viτi2 + κi θi − μi
2 / 2σi2 , i = 1, 2

The joint posterior density is given by

f x1, ⋯, xm − 1, xm, ⋯, xn, m, μ1, σ1
2, μ2, σ2

2 ∝ σ1
−(m − 1)exp − ∑

i = 1

m − 1
xi − μ1

2 / 2σ1
2

σ1
2 − v1 + 1 /2 + 1

exp − v1τ1
2 + κ1 θ1 − μ1 2 / 2σ1

2

· σ2
−(n − m + 1)exp − ∑

i = m

n
xi − μ2

2 / 2σ2
2 σ2

2 − v2 + 1 /2 + 1
exp − v2τ2

2 + κ2 θ2 − μ2 2 / 2σ2
2

We integrated over the nuisance parameters (μ1, σ1
2, μ2, σ2

2) to obtain the closed form of the 

marginal distributions

f x1, ⋯, xm − 1, xm, ⋯, xn, m = ∫ f x1, ⋯, xm − 1, xm, ⋯, xn, m, μ1, σ1
2, μ2, σ2

2 dμ1dσ1
2dμ2dσ2

2

∝ m − 1 + κ1 −1/2G1
− v1 + m − 1 /2 Γ v1 + m − 1 /2

⋅ n − m + 1 + κ2 −1/2G2
− v2 + n − m + 1 /2 Γ v2 + n − m + 1 /2
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where

G1 = ∑
i = 1

m − 1
xi2 + v1τ1

2 + κ1θ1
2 − ∑

i = 1

m − 1
xi + κ1θ1

2
/ m − 1 + κ1

G2 = ∑
i = m

n
xi2 + v2τ2

2 + κ2θ2
2 − ∑

i = m

n
xi + κ2θ2

2
/ n − m + 1 + κ2

Hence, the posterior probability distribution of m is given by

f m ∣ x1, ⋯, xm − 1, xm, ⋯, xn = f x1, ⋯, xm − 1, xm, ⋯, xn, m /f x1, ⋯, xm − 1, xm, ⋯, xn

where

f x1, ⋯, xm − 1, xm, ⋯, xn = ∑
m = 2

n
f x1, ⋯, xm − 1, xm, ⋯, xn, m

Using this posterior density, the timing of the drop and its credible intervals can then be 

obtained.

All the computations were carried out by using the software SAS 9.2 (SAS Institute, NC, 

USA) and the R 2.13.1 software (www.r-project.org).

3. Results

A seasonally adjusted model for the monthly 2000–2010 TB data is shown in Figure 2. After 

considering several alternatives, an ARIMA (0, 1, 1) (0, 1, 1)12 model produced the best fit 

to the 2000–2007 log transformed data (R2 = 0.96). Because of the first-order difference of 

the ARIMA model, the residuals start at 2001 (Figure 3).

To assess the validity of model forecast, the differences of observed data and expected 

values from the model for 2008 were tested against the residuals of 2001–2007. No 

significant difference was found by t-test (p = 0.90), suggesting that the model was valid for 

forecasting future data that follow the same trend or pattern of previous years.

When the differences of observed data and expected values for 2009 and 2010 were tested 

against the residuals of 2001–2007, significant differences were found by t-test (p = 0.005 

for 2009 and p = 0.001 for 2010). These results suggested that 2009 and 2010 data did not 

follow the same trend of previous years.

A substantial drop in TB cases in late 2008 and early 2009 was observed (Figure 3). To 

further study the drop, multiple intervention models, one for each month from July 2007 to 

June 2010, were used to model the log transformed monthly data by assuming each model 

had an intervention location at different months of the year, with unknown magnitude. The 
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best fit model for each intervention month was determined by the AIC value. Repeating this 

process, the ARIMA (0, 1, 1) (0, 1, 1)12 models with step intervention functions of different 

magnitudes at each intervention month were compared by computing their corresponding 

AIC values (Figure 4). The smallest AIC value in January 2009 indicated that the 

intervention timing was most likely to be in January 2009, with the next best fitting location 

of the timing in November 2008. The magnitude of the drop and its 95% confidence interval 

were estimated by the β coefficient for January 2009 as −11.2% (−14.5%, −7.9%).

To estimate the credible intervals (CI) for the timing of the intervention, a Bayesian 

technique was developed. The residuals of 2001–2007 and the differences of the observed 

data and expected values from the ARIMA model in first stage, normalized by a factor of 

0.01 (Figure 3), were used to build the Bayesian model. The initial values (θ1 = 0, θ2 = −1, 

κi = 1, νi = 0.5, and τi2 = 3; i = 1, 2) were used for the prior distributions. Using the posterior 

probability distribution formula for the timing variable (m), we estimated the posterior 

probability distribution for the timing of change m (Figure 5). The maximum in the posterior 

probability distribution occurred in January 2009 (95% CI: 07/2008, 04/2009). We further 

conducted sensitivity analyses for initial values of prior parameters and found no change for 

the point estimate of m and minimal changes for its credible interval.

4. Discussion

In this paper, we propose a combination of methods to model time series data to achieve 

higher resolution for statistical inferences. The three-stage modeling for the time series data 

in this paper provides a practical approach for statistical inferences about the details of the 

change or early detection of a change in the trend of time series data.

Beyond seasonal monthly data, time series data in public health may include other 

operational data (e.g., engineering or financial data) with higher resolution such as weekly or 

daily counts or in smaller units. Usually, time series data with higher resolutions may 

contain more random noise or have different patterns and therefore be harder to analyze than 

annual data. Considering the efficiency needed to produce analytical results or preliminary 

conclusions for public health data, such as rapid analysis of pandemic influenza trends, 

building a more general theoretical model than the one that we present might not be feasible 

or practical because of the complexity involved.

The usefulness of this approach is reflected in the modeling of the TB time series data. First, 

the time series data can be assessed at different stages to learn the patterns of the data and to 

ensure the validity of the modeling at each stage. Second, the approach by different stages 

will reduce the complexity of general modeling and produce interpretable results for each 

stage. Third, the methods for each stage may stand alone to produce estimates for different 

data series or for difference purposes.

The contributions of the Bayesian analysis include detecting the change in location and its 

credible interval for data series from another process and for the original data series. 

Because a closed form posterior distribution was derived, the effects of sampling 

distributions and values of prior parameters can be analyzed and interpreted in the process of 
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updating the posterior distribution. This Bayesian approach can also be used to estimate the 

change in magnitude. Our Bayesian interval estimates are similar to results obtained from a 

Joinpoint analysis used in another related paper [5].

In summary, the three-stage approach in this paper combining ARIMA, ARIMA 

intervention, and Bayesian methods provides a practical and effective way for the estimation 

and interpretation of operational data in public health or other areas. Future work may 

involve building a single Bayesian model combining the ARIMA and the Bayesian 

components that we presented.
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Figure 1. 
Annual tuberculosis incidence rates in the United States, 2000–2010.
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Figure 2. 
Monthly TB cases in the United States and ARIMA model, 2000–2010.
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Figure 3. 
Differences of observed and expected TB cases from ARIMA model.
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Figure 4. 
AIC values of intervention models by timing of intervention.
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Figure 5. 
Posterior probability distribution for timing of change.
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